

The challenges and experiences in developing multi-objective basin plans

Flood and Drought Management Webinars

Flood and Drought Management Tools project 🥰 🥨

- Implemented by UNEP and executed by IWA and DHI
- Duration 2014 to 2018

Development of technical tools to improve the ability to address floods and droughts in the planning process at basin and local scale.

Decision making

Project web-page: http://fdmt.iwlearn.org

Agenda

1. Experiences in Using Decision Support System tools for the development of the multi-sectoral Shire River Basin Plan (Børge Storm, DHI)

2. Innovative application for stakeholder driven planning as part of the Flood and Drought Management Tools project (Sílvia Leirião, DHI)

3. Additional questions from the audience

Development of Strategic Plan for the Development and Management of the Shire River

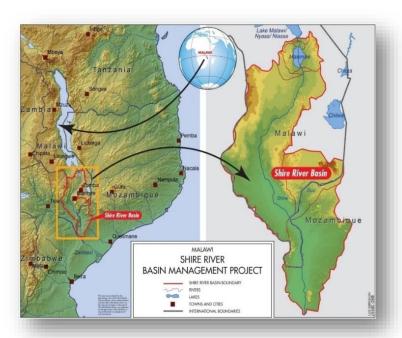
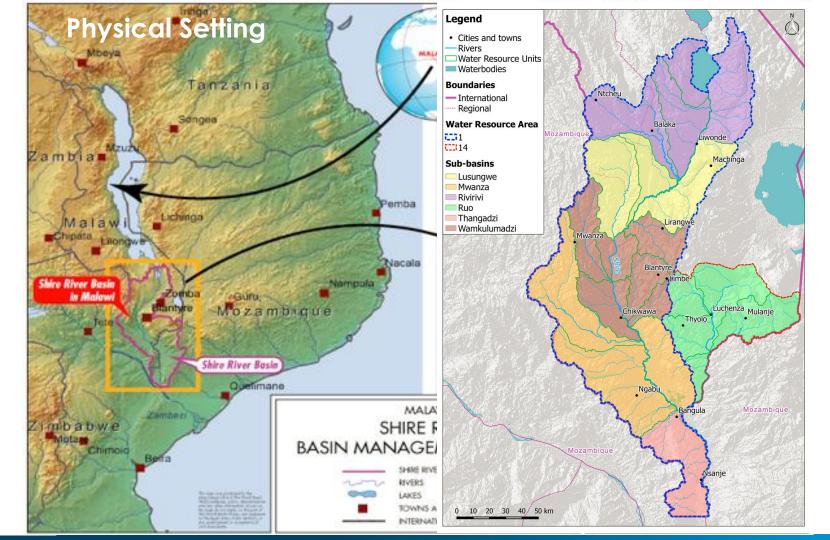

a component under the Shire River Basin Management Program, (SRBMP - Phase I)

Illustration of Use of Technical DSS Tools to Support the Basin Plan Development.

Mr. Børge Storm, DHI, Senior Advisor (presenter)
Dr Geoff Wright, NIRAS, Team Leader

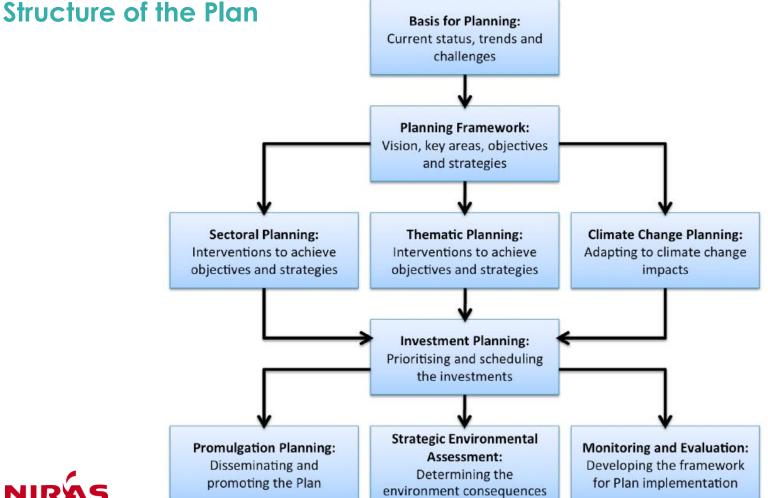


Outline of Presentation

- ➤ Introduction to Shire River basin and some key issues;
- ➤ Brief introduction to Basin Planning Approach;
- > Presentation of Tools of the Planning DSS and examples of use;

Threats to Development

- > High Population Growth
- Poor Basic Education
- Reliance on Smallholder Agriculture
- ➤ High Dependence on Biomass for Energy
- Limited Basis for Economic Growth
- Lack of Widespread Electricity Distribution to Households
- Adverse Impacts of Climate Change
- Lake Malawi Water Levels and Shire River Flows



Results of "report card" exercise

Attributes of good basin management	Rating				
Action to a good busin management	Poor	Fair	Good	Excellent	
1. STABLE INSTITUTIONAL FRAMEWORK					
1.1 Strong but flexible institutional arrangements are in place, extend basin wide across	4	6	1	1	
international borders.					
1.2 Robust and workable legal agreements are in place.	2	4	6		
1.3 There is an integrated natural resource framework in place.	3	5	4		
1.4 There are effective systems and procedures in place for community involvement at all levels.	2	7	3		
2. KNOWLEDGE					
2.1 Good river water quantity information is available across the whole basin.	7	3	2		
2.2 Good river water quality information is available across the whole basin.	7	4	1		
2.3 A comprehensive natural resource database (land, soil, fish, forest, fauna, etc is available.	4	5	3		
2.4 Natural resource data has been processed into usable information, accessible to all that need	3	8	1		
it.					
2.5 Additional data needs have been identified and programs are in place to satisfy them.	5	5	2		
2.6 Research is adequately funded and is targeted to meet knowledge gaps.	7	4	1		
2.7 Robust analytical models have been developed that will enable development proposals to be	6	4	2		
evaluated within a sustainable natural resource framework.					
3. INTEGRATION					
3.1 All agencies are working together on a "whole of resource" framework.	2	8	1		
3.2 Artificial sector boundaries have been broken down so that holistic resource management	4	6	1		
decisions are being made.					
3.3 Project evaluations are taking full account of the social, economic and environmental impacts.	2	4	5		
4. COMMUNITY INVOLVEMENT					
4.1 Community education and awareness programs are in place across the basin.	2	7	2		
4.2 Community input is sought and recognised at the village, catchment and basin level.	1	6	4		
4.3 Community led, and implemented resource rehabilitation programs are in place across the	2	5	4		

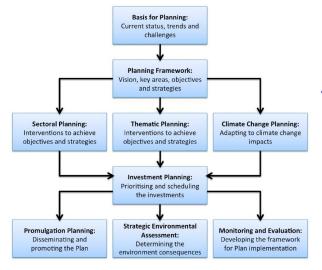
Vision and Key Areas

"By 2035, we envisage prosperous families, green catchments and healthy waterways in the Shire River Basin"

Identified key areas based on the Vision:

- 1. Prosperous families
- 2. Green catchments
- 3. Healthy waterways
- 4. Robust institutions and planning
- 5. Reliable data and Information

The Plan


The Shire River Basin Plan will be presented in twelve volumes:

- 1. Basis for Planning
- 2. Framework Plan
- 3. Sectoral Planning
- 4. Thematic Planning
- 5. Climate Change Adaptation Plan
- 6. Sub-basin Plans
- Investment Plan
- 8. Strategic Environmental Assessment
- 9. Promulgation Plan
- 10. Monitoring, Evaluation and Reporting Plan
- 11. Bibliography
- 12. Executive Summary

Planning DSS Framework Implementation

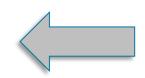
The Implementation includes:

Tool development and use:

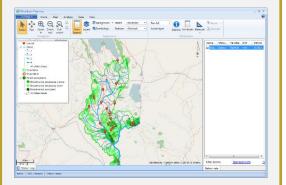
- Information and Knowledge Portal; and
- Simulation models and DSS tools/techniques.

Technology Transfer activities:

- Capacity Building / training.
- Installation



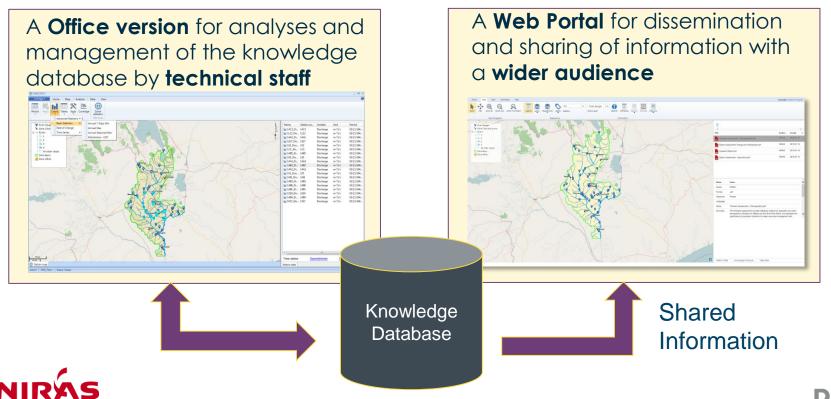
Planning DSS Framework Use Approach

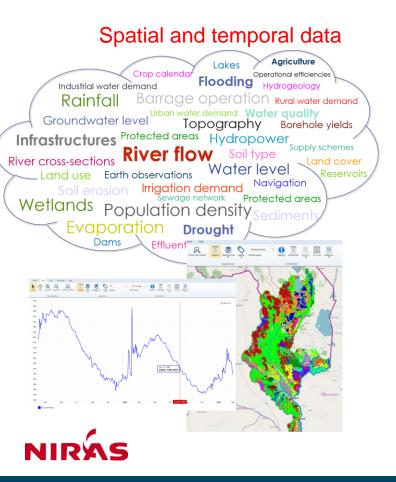

Collection Processing Storing Analysing Sharing

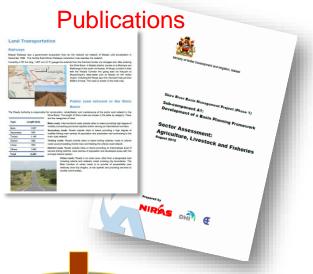
Planning Option Evaluation Recommendations

Planning DSS

Information System & Knowledge Portal


Domain & Planning Modelling/Tools




Information Knowledge System / Portal

One solution – with two types of use options

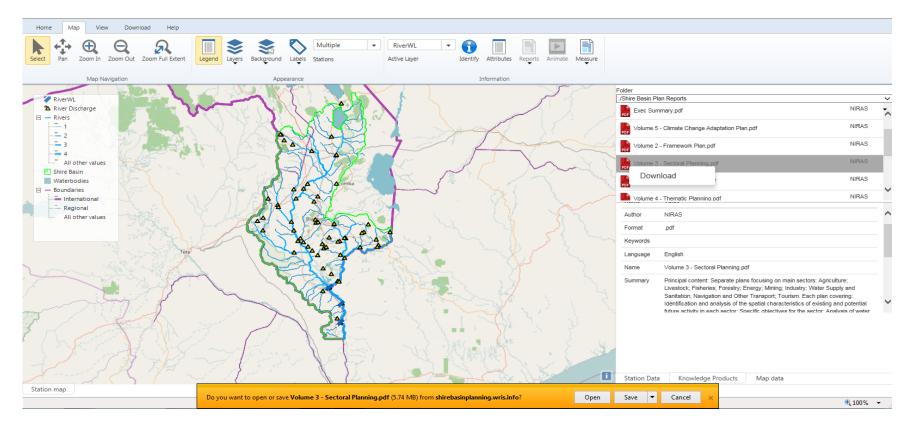
Information & Knowledge Portal

Knowledge Database

Analytical Tools

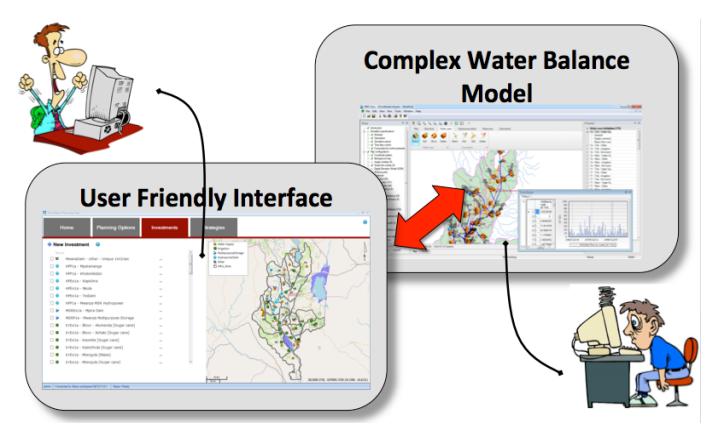
Basin Planning Tool Hydrolo gical Models

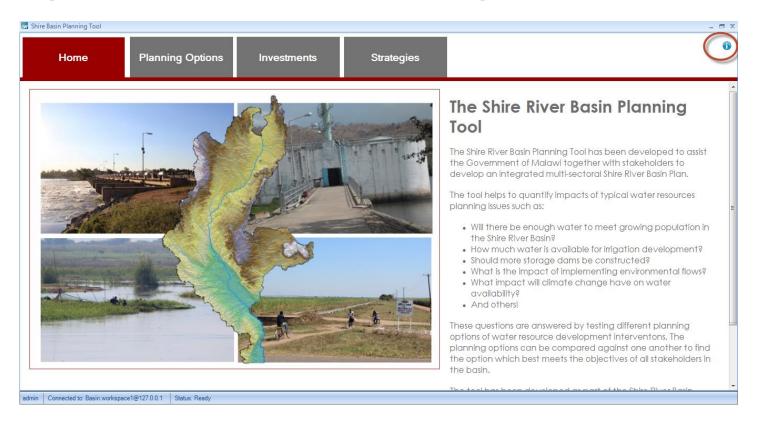
Soil Erosion

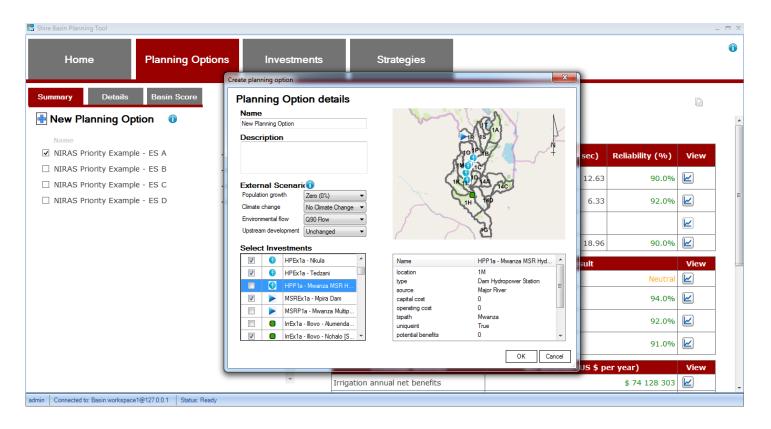

GIS

Links to existing databases or

websites


The Planning Web Portal (http://shirebasinplanning.wris.info/)


The Concept of the Shire Basin Planning Tool


The Design of the Shire Basin Planning Tool

The Design of the Shire Basin Planning Tool

External Scenario approach

Climate Change:

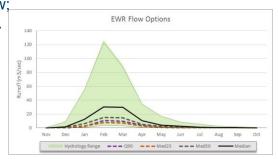
Three global development storylines / scenarios were selected for inclusion into the tool, being A1B, A2 and B1

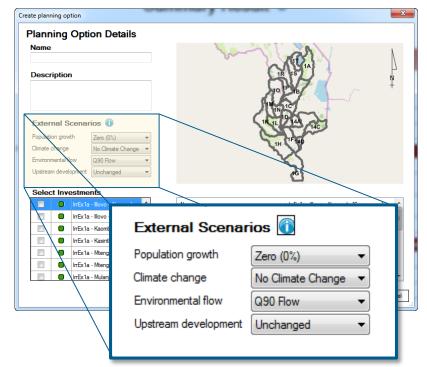
Population Growth:

Low (1.5%) - Medium (2.5%) - High (3.5%)

Upstream Development:

Unchanged – (no change to inflows)

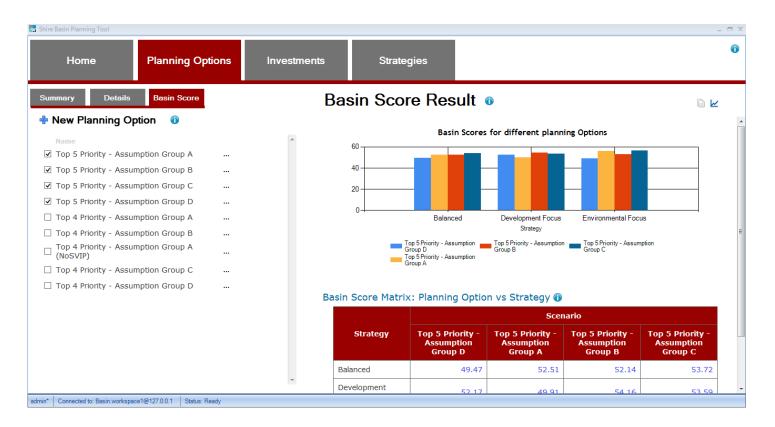

Low – 50 m³/s decrease of inflow (based on current hydrology) **Medium** – 100 m³/s decrease, **High** – 150 m³/s decrease


Environmental flows:

50% of the median natural flow;

25% of the median natural flow;

90th Percentile of natural flow.


The Analytical Workflow of the Planning Tool

Planning Option **Strategies** Simulation model **External Scenarios** Theme weights: Water Resource Development Model Input **Environmental Sustainability** Environmental water requirements Hydrology Economic Returns, & Climate change River network Theme Indicator weights Population growth Infrastructures Upstream development Water users Evaluation of **Environmental requirements** Indicator and **Basin Scores** Sub-set of Prizery Investments Indicators Model Output Long-list of **Flows Priority Investments:** Reliability of Supplies Lake Levels **Environmental Supply** Runoff Reliability of Energy Irrigation Groundwater Groundwater Sustainability Water Supply etc. **Economic Benefits** Hydropower Dams etc. Groundwater Others

The Design of the Shire Basin Planning Tool

No.	Planning Option		External Scenarios			Selected Key Indicators					
	Interventions	EWR	СС	PG	us	Irrigation reliability	WS reliability	Energy (GWh/year)	EWR reliability	Net benefit (\$m/year)	Liwonde Q (m ³ /s)
1	Current level of development	L	None	None	None	99%	92%	2,765	86%	232	243
2	Current level of development	L	None	None	М	99%	92%	2,329	86%	196	207
3	Current development + SVIP with second priority after hydropower	М	М	М	None	67%	84%	2,640	69%	239	248
4	Current development + SVIP with second priority after hydropower	М	М	М	L	55%	84%	2,442	69%	219	229
5	Current development + SVIP with second priority after hydropower	М	М	М	М	46%	84%	2,178	69%	195	201
6	Current development + SVIP with first priority over hydropower	М	М	М	None	100%	84%	2,599	69%	243	248
7	hydropower + top priority in each sector	М	М	М	None	90%	88%	5,219	68%	478	249
8	Current + SVIP with first priority over hydropower + all priorities in each sector (but excluding new hydropower)	М	М	М	None	83%	89%	5,219	66%	482	249
9	Current + SVIP with first priority over hydropower + all priorities in each sector (including new hydropower)	М	М	М	None	83%	89%	6,373	66%	579	256
10	Current + SVIP with first priority over hydropower + all priorities in each sector (including new hydropower)	Н	Н	Н	None	83%	88%	6,374	59%	579	256
11	Current + SVIP with first priority over hydropower + all priorities in each sector (including new hydropower)	Н	Н	Н	М	83%	88%	5,878	59%	537	200
Note:	Note: See Annex 3 for comprehensive results for each planning option simulation. EWR = environmental flow requirement Q = average release from Kamuzu Barrage (Liwonde) CC = climate change L = Low PG = population growth M = Medium US = future upstream development H = High										

Sector/Domain	Rank	Name of the intervention
Agriculture/Irrigation	A1	Shire Valley Irrigation Project
	A2	Chilengo Irrigation Scheme
	A3	Ruo Diversion Irrigation Scheme
	A4	Mkulumadzi New Irrigation Scheme
	A5	Nthirananja New Irrigation Scheme
Environment	Env1	Reforestation at the watershed level
	Env2	Environment Water Requirements of Rivirivi sub-basin
	Env3	Environment Water Requirements of Lusungwe sub-basin
	Env4	Environment Water Requirements of Mwanza sub-basin
	Env5	Improvement of Mwanza catchments to all others
Energy/Hydropower	Eng1	Kamwamba Coal Fired Plant
	Eng2	Development of a Multi-Purpose dam near Mwanza
	Eng3	Development of a Multi-Purpose dam of Chiradzulu
	Eng4	Mpatamanga Hydropower Plant
	Eng5	Kholombidzo Low head Power Plant
Water supply/Sanitation	WSS1	Expansion of the water production at Walkers Ferry
	WSS2	Rehabilitation of Mpira-Balaka Rural Water Supply Scheme
	WSS3	Deepening and rehabilitation of boreholes
	WSS4	Development of Multi-Purpose dam Mwanza
	WSS5	Feasibility Study for rehabilitation of selected Gravity Fed Schemes for urban water supply

Discussing of priority intervention/investments by key stakeholders

Ranking of Investments

Rank	Investment	Score*	Comment
1	Shire Valley Irrigation Project	35.1	Feasibility studies being undertaken under the Green Belt Initiative
2	Expansion of the water production at Walkers Ferry	41.8	Feasibility study and detailed design completed
3	Kamwamba Coal Fired Power Plant	44.9	Being funded by the Export & Import Bank of the People's Republic of China
4	Mpira-Balaka Rural Water Supply Rehabilitation	44.9	
5	Multi-purpose dam near Mwanza	44.9	Feasibility study completed
6	Mpatamanga Hydropower Plant	45.4	Technical investigations already in progress funded by World Bank
7	Ruo Diversion (Irrigation) Scheme	45.6	
8	Mkulumadzi New Irrigation Scheme	45.5	
9	Kholombidzo Low head Power Plant	46.4	
10	Nthirananja New Irrigation Scheme	46.4	

Summary

- ➤ A Comprehensive Basin Plan for the Shire River Basin is in its final stages of preparation;
- ➤ A Planning DSS Framework comprising Information and Knowledge System/Portal and Planning Models/tools has been developed and used to support the Strategic Planning process;
- > Training of counterpart staff has been undertaken.

Basin planning – new application for stakeholder driven basin and catchment planning

Sílvia Leirião – DHI

WR Engineer

sls@dhigroup.com

Agenda

- Project background
- Objectives
- Planning application
- Status and next steps

Project background

- Facilitating a scientific approach to decision-making (TDA/SAP, WSP etc.)
- Support decision processes at basin and local level
- Technical tools supporting the inclusion of flood and drought issues into existing planning processes

Implemented by UNEP
Executed by IWA and DHI
2014 to 2018

Project background

Development of ToOls to Incorporate Impacts of Climatic Variability and Change in Particular Floods and Droughts into Basin Planning Processes

Operational planning

Short-term and seasonal management Climate variability and water management National, basin or catchment planning

Strategic planning

Long-term investments
Climate change and population growth
TDA/SAP, IWRM

Project background

Area: Volta

Flood and Drought Portal

About the DataPortal

The Flood & Drought portal is developed as part of the Flood and Drought Management Tools project. For more information on the project please visit the project home page at: http://fdmt.iwlearn.org/en

The Flood & Drought portal provides access to a number of apps supporting decision makers at basin and local level. The aim is to support existing planning processes as TDA/SAP and IWRM at basin scale and Water Safety Planning at local scale through the technical apps. The apps could be used individually or in connection.

Please visit the user guide for more indepth information on the use of the apps and their intended support for the different stages within basin and local level planning.

For technical questions please contact:

<u>Oluf Jessen (Project manager)</u> or <u>Bertrand Richaud</u> (Water resources expert)

DATA AND INFORMATION

Access to near real-time data. Flood and drought indices. Climate forecast and climate change data.

DROUGHT ASSESSMENT

(Under development). Locate and identify hazards, estimate impacts and procide risk assessment.

FLOOD ASSESSMENT

(Under development). Locate and identify hazards, estimate impacts and procide risk assessment.

Workgroup: Private

ISSUE ANALYSIS

(Under development). Causal Chain analysis and WRIAM. Understand and prioritise the causes behind issues.

INDICATOR BUILDER

Explore and create indicator frameworks to support management and decisionmaking.

BASIN PLANNING

(Under development). Create and evaluate basin plans. Linkage to water resource model.

WATER SAFETY PLANNING

Set up water safety plans and identify hazards

REPORTING

(Under development). User configured templates providing linkage to TDA/SAP, IWRM and WSP.

www.flooddroughtmonitor.com

Baseline assessment

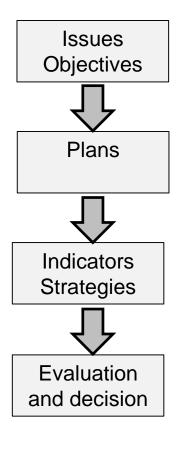
Risk assessment

Planning

Dissemination and warning

Monitoring

Basin Planning


Development of TOOIs to incorporate impacts of Climatic Variability and Change in Particular Floods and Droughts into Basin Flaming Processes

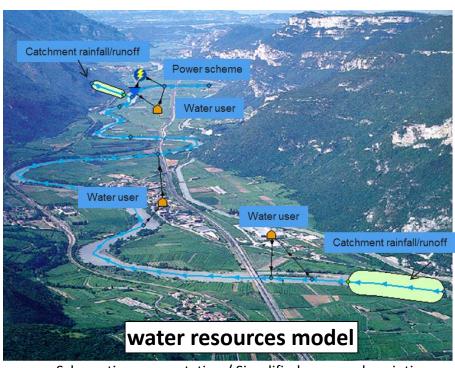
Objective:

- Evaluate existing plans
- Create new plans and evaluate

What is a plan?

- A plan is a combination of investments and factors
- A plan is implemented in the tool through features and information added to an existing water resources model
- A plan is evaluated by executing the water resources model and calculating indicators
- Evaluation of the indicators and strategies within a MCA framework

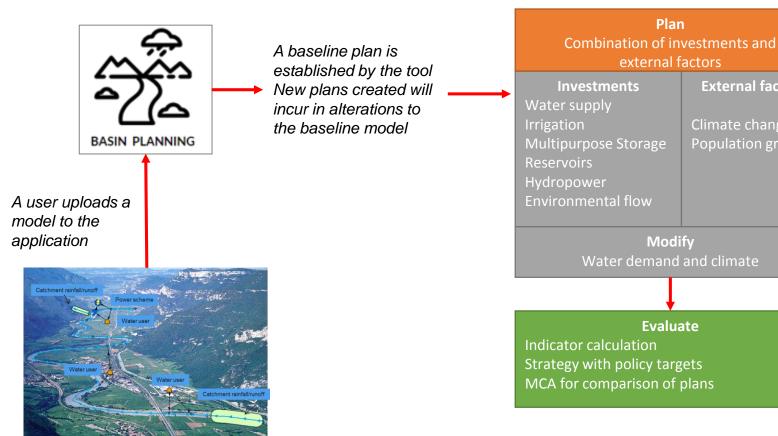
Investments
External factors


Water resources model

Multiple Criteria
Analysis

TDA/SAP IWRM

Basin Planning - concept

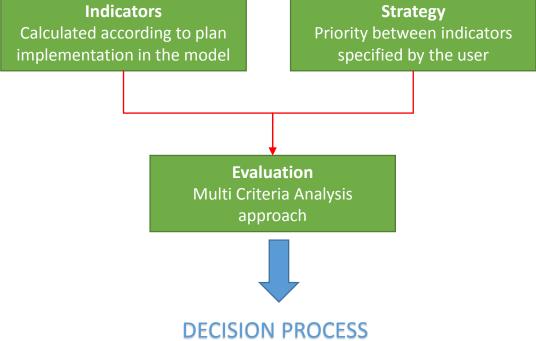

A water resources model takes part in the evaluation of a plan by providing a measure of its impacts.

Schematic representation / Simplified process description

Basin Planning - concept

water resources model

Basin Planning - concept

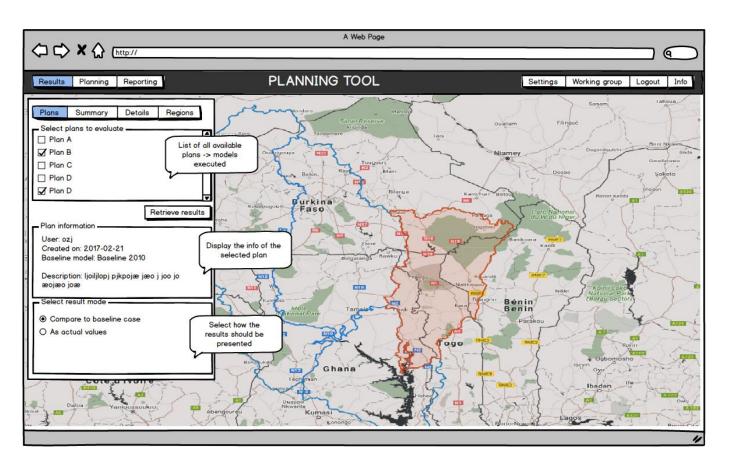

Baseline assessment

Planning

Dissemination and warning

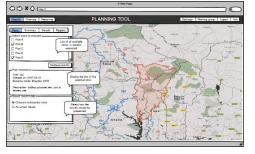
Monitoring

Basin planning - web

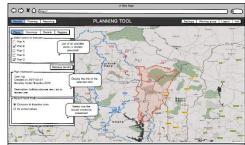


WEB interface for basin planning under development

Basin planning - web







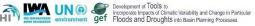
Web interface

Baseline assessment

Risk assessment

Planning

Dissemination and warning


Monitoring

User 1 User 2 User ...

BASIN PLANNING

- Evaluate plans
- Create plans
- Disseminate planning results

Status and next steps

Web application released by September, 2017

Further work required on:

- Indicator selection for different use cases
- Training and testing with stakeholders
 - Lake Victoria, Volta and Chao Phraya
- Extension for WEAP support

THANK YOU

www.flooddroughtmonitor.com

Audience questions

Flood and Drought Webinars

- #1: Use of satellite data for drought and flood management (Technical presentation)
- #2: Drought management today cases from Asia (January 12, 2017)
- #3: Drought early warning and assessment, experiences from Ghana (February 28, 2017)
- #4: Water Safety Plans –link water utilities with basin planning processes (March 15, 2017)
- #5: Basin planning the climate change challenge (April 25, 2017)

Recordings on http://www.unepdhi.org/fd-webinars

New Source to Sea Management webinar series: www.unepdhi.org/webinars/s2s-webinars

- Short feedback survey in follow-up email please take 2 minutes to fill in
 - we value your opinion!

Future flood and drought webinars

Feedback and suggestions for future topics welcome!

Thank you for joining!